Increase of calnexin gene dosage boosts the secretion of heterologous proteins by Hansenula polymorpha
نویسندگان
چکیده
The type I membrane protein calnexin is a conserved key component of the quality control mechanism in the endoplasmic reticulum. It functions as a molecular chaperone that monitors the folding state of nascent polypeptides entering the endoplasmic reticulum. Calnexin also behaves as a lectin, as its chaperoning activity involves binding of oligosaccharide moieties present on newly imported glycoproteins. We isolated the calnexin gene (HpCNE1) from the methylotrophic yeast Hansenula polymorpha, and used HpCNE1 expression plasmids for super-transformation of H. polymorpha strains secreting target proteins of biotechnological interest. The elevated dosage of HpCNE1 enhanced secretion of the four proteins tested: three glycoproteins and one unglycosylated product. Secretion of bacterial alginate epimerase AlgE1 was increased threefold on average, and secretion of both human interferon-gamma and fungal consensus phytase twofold. With phytase and AlgE1 this improvement was all the more remarkable, as the secretion level was already high in the original strains (g L(-1) range). The same approach improved secretion of human serum albumin, which lacks N-linked glycans, about twofold. Glycosylation of the pro-MFalpha1 leader may account for the effect of calnexin in this case. Our results argue that cooverexpression of calnexin can serve as a generally applicable tool for enhancing the secretion of all types of heterologous protein by H. polymorpha.
منابع مشابه
Comparison of biochemical properties of recombinant endoglucanase II of Trichoderma reesei in methylotrophic yeasts, Pichia pastoris and Hansenula polymorpha
Bioconversion of cellulosic material into bioethanol needs cellulase complex enzymesthat contain endoglucanase, exoglucanase and beta glucosidase. One of the most important organisms that produce cellulases is the filamentous fungi, Trichoderma reesei which able to secrete large amounts of different cellulases. These enzymes are probably the most widely used cellulases industrially, however, th...
متن کاملA novel platform for the production of nonhydroxylated gelatins based on the methylotrophic yeast Hansenula polymorpha.
The use of yeast as a host for heterologous expression of proteins that are normally derived from animal tissue is a promising way to ensure defined products that are devoid of potential harmful animal side products. Here we report on the production and secretion of a custom-designed gelatin, Hu3-His8, by the yeast Hansenula polymorpha. We observed that Hu3-His8 was poorly secreted by the heter...
متن کاملComparison of biochemical properties of recombinant phytase expression in the favorable methylotrophic platforms of Pichia pastoris and Hansenula polymorpha
Phytic acid is the dominant form of phosphorous in plant seeds. However, phytic acid cannot beutilized by animals and causes them serious phosphate deficiency. Utilization of phytase as ananimal feed additive can affect liberation of phosphor and its mineral availability. In this study,heterologous expression of the A. niger phyA gene was investigated in the methylotrophic yeastsP. pastoris and...
متن کاملExpression of granulocyte colony stimulating factor (GCSF) in Hansenula polymorpha
BACKGROUND AND OBJECTIVES During past decades Hansenula polymorpha has attracted global attention for the expression of recombinant proteins due to its high growth rate, minimal nutritional porequirements and use of methanol as a low cost inducer. MATERIALS AND METHODS The corresponding nucleotide sequences for the expression of heterologous genes in Hansenula poylmorpha were extracted and as...
متن کاملExpression of bovine follicle-stimulating hormone subunits in a Hansenula polymorpha expression system increases the secretion and bioactivity in vivo.
Bovine follicle-stimulating hormone (bFSH), a pituitary gonadotropin, is a heterodimer hormone that consists of a common alpha-subunit non-covalently associated with the hormone-specific beta-subunit. Unfortunately, expression levels of recombinant bFSH or its subunits are invariably low. We report here the secretory expression of biologically active bFSHalpha and bFSHbeta subunit in the methyl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Fems Yeast Research
دوره 7 شماره
صفحات -
تاریخ انتشار 2007